For Superboard 600 and C1P

YE-OSI DOS
3.54

1984 by TB

Revised 2024

Page | 1

YE-OSI
*** DISK OPERATING SYS FOR SB600 & Clp ***
*xxx WRITTEN IN 1984 BY TB *x*x

*xxx UPDATE VERSION FOR STD ROM’S *x*x

KKK A KA AR KA A KR A AR A AR AR A AR A A AR A AR A AR A AR AR AKX * Kk

To run YE-OSI DOS 3.54, it is mandatory to

- have a minimum of 32kB of RAM memory

- add a disk controller board from ELEKTOR or an OSI 610 Floppy board
Main memory will be permanently occupied from 0x6800 up to Ox7FFF

- do minor modifications on OSI 610 board to allow 3.5 & 5.25 inch drives
YE-DOS supports 35 and 80 track, single or double sides drives

With version 3.54, it is recommended to remove Drive Select Line resistors R43
and R44 and the Write Enable Line resistor R41 at PBO on the 610 board. There
must be a pull-up resistor installed/enabled on one of the drives attached!

This will prevent data corruption on inserted diskettes, when, when power is
turns on or off.

YE-DOS starts in 2 phases. First the Boot sector and afterwards DOSSUP.COM, a
BASIC command add-on is loaded into memory.

With DOSSUP, you will get additional BASIC commands as:

PAGE, SET, CALL for general purpose

DLOD, ERR, DISK, DOS, ASS for rudimental disk management

DIR, SEL, DSAV, DFMT, DCHK, DREN for disk file management
EOF, SEQS, SEQW, VER for disk data management

CLG, GDIS, SCR for Text and Low-resolution graphics

PTR for general purpose variable management

DOSSUP will be loaded into memory at location $7040 to Ox79FF

It is possible to run a rudimental system DOS in conjunction with code from
the Boot sector of the disk. But it is recommended to make use of DOS Support
routines. All BASIC routines are located in DOSSUP and are automatically
loaded at startup from the disk in drive O.

YE-OSI DOS 3.54

Page | 2

Boot sequence selecting "D":

Like the standard OSI System ROM, the boot sector on drive 0 is loaded on
request into memory. This is done by selection D after pressing the RESET.

From here, you have to select

C) COLD START (will clear all memory)

W) WARM START or E)

If file DOSSUP is present on the boot drive, it will be loaded automatically.
DOSSUP stands for DOS Supplement. Extended BASIC commands will be available.

DOS Memory Map:

Address Content
ROM OXFFFF Modified SYSTEM ROM
EPROM1 V54 .ROM O0xF800

Serial ACIA

0OSI I/0 0xF000 O0xF000 ACIA 1
Option OxF400 ACIA 2
0SI I/0 0xDF00 Polled Keyboard
OSI DISPLAY OxD7FF
RAM 0xD000 Display RAM (2kB)
0xC000 6822 PIA Port
FDC I/O .
0xC010 and ACIA Floppy Disk
OSI BASIC OxBFFF
ROM 0xA000 8K Microsoft Basic
OPTIONAL Ox9FFF
HIRES DISPLAY Hires 265x265 pixel
0x8000 o
or additional RAM
Ox7FFF 32k min

YE-DOS starting at 0x6800

USER RAM
BASIC Code start at 0x0300
0x0200
up to 32K (40k) User RAM
STACK O0x01lFF
ZEROPAGE 0x0000

YE-OSI DOS 3.54

Page | 3

xxk* RAM for DOS Extension ****xx*x%

OPERATIONG SYSTEM RAM:

$6800-6FFF = 2k used by YE-OSI DOS 3.54 (Boot Sector Code)
$7000-703F = DOS TEMP Memory for STACK and Zero page (2x32 Bytes)

$7040-79FF = 2.5k used by DOS SUPPLMENT DOSSUP

I/0:
SFOOO-FOFF = OSI ACIA I/0

SF100-F1FF = 2rd ACIA (optional Microsoft serial Mouse Port @ 1200 baud)

$C000 Disk PIA DATA A
$C002 = Disk PIA DATA B
$C001 = Disk PIA CTRL A
$C003 = Disk PIA CTRL B

$C010 = Disk ACIA Control Port

$C011 = Disk ACIA Data Port

ADDITIONAL DOS RAM:

$7A00-7AFF = (256 Bytes Free RAM, (BASIC DISK OR FILE COPY or NMI Routine)
$7B00-7BFF = TEMPORARY memory for building Track/Sector list
$7CO00-7FFF = DOS FAT memory location (RAM)

- $7C00 SECTOR USAGE INFORMATION (Address Vector in 682D)

- $7C50 DISK TITLE 16 bytes (Address Vector in 682B)

- $7C60 START OF FILE DIRECTORY (Address Vector in 682F)

IMPORTANT REMARK:
YE-DOS will work on double (max 2) or single sided (max 4) drives.

In case of double-sided drives, each side is accessed separately, like on
single drives, but YE-DOS takes care, that each side/head walks synchronous.

Important to mention is, that the data format on track zero is 8El to allow
booting from standard ROM’s. All other tracks use the 8N1 format for higher
storage capacity.

YE-OSI DOS 3.54

Page |

hhkkhkkkhhhkhkhkhkhhhkrkhkhhhhkhkhhhhkrkhkhkhkkhkkkrkkhkkkkhkkk*x
kkkkkkkkkkkxkk*x OQUICK START GUIDE ***kkkkkkkkkkkkk

hkkhkkkkkhkkkhkkhkkhkkkhkkkhkkhkkhkkhkkhkhkkhkhkkhkhkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkkxkx

DOSSUP provides some of the following BASIC commands to manage disk drives
EXAMPIES:
Show file directory of currently selected disk drive

= DIR

Select the second disk drive 2, Boot drive is drive 0

= SEL 2

Save current Basic program to disk drive 0

= DSAV "TEST",0,0,0
will save under filename "TEST" onto drive 0 as a read write basic
program.

Load back a Basic program from currently selected disk drive

= DLOD "TEST"
The BASIC program "TEST" will be loaded into memory

Rename the Basic program "TEST" from disk drive 0 into "HELLO"

= DREN "TEST", "HELLO",O
The BASIC program "TEST" will be renamed to "HELLO" on disk O

Delete a Basic program from disk drive 0

2 DREN "HELLO","",0
The BASIC program "HELLO" will be deleted from disk 0

Writing Bootsector only to disk 0
= DFMT 0,1,0
The second parameter specifies “Bootsector only”

If you have double sided disk drives, you may update the Bootsector
for these specific drives with (last parameter):

> DEMT 0,1,1

YE-OSI DOS 3.54

4

New

Page |

BASIC commands summary

* % k% DIR *kkkkkkkx* COMMAND:

DIR

DIR

all

The

any

DIR

For

The

BAS

COM

SEQ

VAR

["String"]

will list the current active file directory. If no "String" is entered
files will be displayed. The length is shown in 256-byte sectors.
listing will pause after 9 file names. To continue press, ENTER,

other key will end the directory listing.

"String" will list all files starting with the "String" letters.

example: DIR"DO" will list all files starting with letters "DO.."

file type is specified as:

= BASIC Token Memory loads typically to $0300
= MCODE Binary Code

= SEQUENCIAL Data values separated by comma

= VARIABLE Other type of data

Protection status:

RWn

RWa

= Read/Write normal
= Read/Write autorun
= Read Only normal

= Read Only autorun

DEVICE &
SECTORS FREE

LENGTH
4

YE-OSI DOS 3.54

5

Page | 6

*hkkkk SEL *kkkkkkk*x COMMAND :

SEL DRIVE

will select "DRIVE" number 0...3. If FAT was changed, FAT is saved before.
IMPORTAT !

Be careful removing and inserting disk into the drive during operation. YE-DOS
will not automatically detect, when a new disk is inserted!!

To reload the Disk FAT directory, always type SEL 0..3, to get the current
disk content. Otherwise, the disk content may get corrupted.

Only inserted disk will be detected as valid drives. Use DISK command to
refresh the drive valid information.

Physical Drive 1
Side A: >Drive number 0
Side B: >Drive number 1
Physical Drive 2
Side A: >Drive number 2

Side B: >Drive number 3

Remark: Emulation supports drive number 0/1 first and 2/3 for second.

*kkkkk DLOD ******* COMMAND :

DLOD "Filename"

Loads a program from currently selected drive to memory

DLOD command with “*” like (DLOD"*") will load first file in the directory
Filename are max 6 characters long. Additional characters are ignored.

You may enter less characters and YE-OSI DOS will load the first matching

filename into memory. For example, DLOD "EXT will load the file “EXTMON”.

DLOD reads the content from the currently selected Drive (0 after boot)

YE-OSI DOS 3.54

Page | 7

IMPORTANT! Any data retrieved with DLOD will be stored to the same memory
location, as it came from! Loading BASIC programs will overwrite existing
BASIC code.

ok %k DSAV *kkkkkkk*x* Command:

DSAV "FILNAME", DRIVE, TYPE, PROTECTION

> 1lst VERSION <

DSAV stands for Disk Save File and will write a BASIC program, Binary data
or other data to disk. "FILENAME" are max 6 characters, longer names are

ignored.

When DSAV has been executed, active drive will change to the "DRIVE"

number. Check the variable ERR, if any Error occurred.

For the file attributes Type and Protection, see the following valid codes.
*** TYPE codes:

BAS=0, COM=1, SEQ=2, VAR=3

*** PROTECTION codes:

RWn=0 RWa=1 ROn=2 ROa=3

Example: DSAV "TEST",2,0,0 will save a BASIC program in memory with the

filename "TEST". BASIC programs require no address range information.
If a file already exists and file protection is "Read Only", like 2 or 3,

DSAV will fail. In such a case, you have to remove the file protection with

DREN (Disk File Rename) first. For example, DREN “TEST”,”TEST”,0,0,0

YE-OSI DOS 3.54

Page |

Fkk ok ok DSAU **xkkkxk**x*x Command:

DSAV "FILNAME", DRIVE, TYPE, PROTECTION, START, END

> 2nd VERSION <

Types COM, SEQ and VAR are saved in the same way. These file types
(Binary Code, Sequential or Variable) are written to the disk like binary

data, but with its specific Type identification.

8

Example: DSAV “TEST”, 0, 1, 1, 32768, 32768+1023 will write 1lkb binary data

to drive 0 as an autorun RW file (RWa). Execution will start after loading

the file back at address 32768 in this example.

*kk Kk SEQS *kkkkkkkk*x COMMAND :

SEQS Address

SEQS or Sequence Set Read file pointer will set the pointer to the
"Address" in memory.

The purpose is to READ strings or numbers from a given memory location.
These data elements have to be “comma” separated.

The next READ operation will get the stored strings and numbers in a

typical DATA read operation.

*kk*kk SEQW *kkkkkkxk*x COMMAND :

NewAddress = SEQW Address, Parameterl, P2,

SEQW or Sequence Write data, will put strings or numbers to the Address

YE-OSI DOS 3.54

Page | 9

Pointer. The Command will return the new Address pointing to the next Input.

SEQS and SEQW are used to store string or variables in memory that can be

saved or loaded to or back from disk. Memory space selection and pointer

control has to be done by software.

*hkkkk EOF *kkkkkkk*x COMMAND :

[Value=] EOF

EOF

will return TRUE after a READ operation, if more data is available.

Example in BASIC:

10

20

25

30

35

40

50

60

70

80

90

110

120

130

140

150

AN=31232:EN=AN+256-20
RESTORE : PAGE
AS="QWERTY"

LE=SEQW AN:REM SET START POINTER
PRINT"GENERATE SEQ DATA AT S$7A00"
LE=SEQW LE,AS,LE, -1

IFLE<ENTHEN40

LE=SEQW LE:REM GET END POINTER
SL=LE:LE=AN

SEQS LE
READBS,AD, F

PRINT BS$;AD;F

IF EOF THEN90

PRINT

PRINT"SEQ DATA SIZE";SL-AN;" BYTES"

F$="DATA":DSAV F$,0,2,0,AN, SL

YE-OSI DOS 3.54

Page |

155 IF ERR<>0 THEN PRINT"ERROR";ERR:STOP
160 PRINT"DATA SAVED"

170 DLOD F$

180 IF ERR<>0 THEN PRINT"ERROR";ERR:STOP
190 SEQS AN:REM READ POINTER TO START
200 READBS,AD,F

210 PRINT BS$;AD;F

220 IF EOF THEN200

230 PRINT"DATA LOADED BACK"

240 DREN F$,"",0:REM DELETE FILE

250 IF ERR<>0 THEN PRINT"ERROR";ERR:STOP
This program will generate a data parameter stream of a string and two
numbers at $7A00 (Line 25..50). The sequential data stream is than stored

as "DATA" SEQ file to disk. Afterwards read back and displayed using the

BASIC READ statement (Line 190..220)

sxrre VIR wxsnsnssr commmn:

VER will return the disk DOS version of the currently selected drive

For Example, VER will return "YE-OSI DOS 3.54" on the current revision.

YE-OSI DOS 3.54

10

Page | 11

*hkkkkkx DFMT *kkkk*kkx* COMMAND :

DFMT DRIVE, SECTION, DISKTYPE

DFMT stands for Disk Format. The Command will format a disk "DRIVE".

DFMT will be executed without further prompt or question.

Please make sure, you have no valuable data on the disk to format.
"DRIVE" number has to be between 0...3.

"SECTION" defines, if the whole disk (0) or only the disk BOOT sector (1)
has to be formatted.

"DISKTYPE" defines, if we have a single (0) or double-sided disk (1).
IMPORTANT !

DFMT will only create “blank” diskettes, without content. Use the Basic

program FORMAT.BAS, to create fully bootable diskettes. DFMT will immediately
start, there will be no warning. Both sides on double-sided will be formatted.

EXAMPLE: DEMT 2,0,0 will format disk 2 as single sided.

FORMAT.BAS program example:

10 REM DISK FORMAT UTILITY

15 GOSUB900

20 TA=64768:PAGE:PRINT"UTILITY FOR 40/80 TRACK DRV":PRINT

25 PRINT"FORMAT DRIVE NUMBER ?":T=CALLTA,(0:IFT<48 OR T>51THEN END

30 PRINT:PRINT"INSERT DISK IN DRIVE ";CHRS(T)

35 DR=T-48:GOSUB800:PRINT

40 PRINT"PRESS (Y),WHEN READY:":T=CALLTA, 0:IFT<>89THEN END

50 PRINT:PRINT"FORMATTING DISK";DR

60 DFMT DR, 0,SS:REM FULL FORMAT DISK

80 IF ERR>0 THEN PRINT"FORMAT FAILED, ERROR NUMBER ";ERR

90 REM —=—-—=——==—=——————— e

100 PRINT"TRANSFER DOS TOOLS TO DRIVE";DR

105 PRINT"PRESS (Y),WHEN READY:":T=CALLTA, 0:IFT<>89THEN160

110 SELDR:PRINT:PRINT "TRANSFER DOS EXTENSION TO DRV";DR

YE-OSI DOS 3.54

115

116

120

130

140

150

160

170

200

800

810

820

830

840

850

860

870

875

880

885

900

910

920

930

940

950

960

970

Page

IFYE=1 THEN DSAV"DOSSUP",DR,1,3,BA+2304,BA+4095
IFYE=2 THEN DSAV"DOSSUP",DR,1,3,BA+2112,BA+4607

IF ERR>0 THEN PRINT "TRANSFER FAILED WITH ERROR";ERR
PRINT:PRINT "TRANSFER FORMAT.BAS TO DRV";DR

DSAV "FORMAT",DR,0,1:PRINT:REM TYPE BASIC,R/W AUTORUN
IF ERR>0 THEN PRINT "TRANSFER FAILED WITH ERROR";ERR
DIR:IF ERR>0THEN PRINT"DOS FORMAT FAILED"

SELO:IF ERR>0THEN PRINT"DOS DRIVE 0 FAILURE":END

END

REM CHECK FOR SS OR DS DRIVES

SS=0:IF DR<2 THEN 840

IF PEEK (BA+23)<>255 THEN SS=1

GOTO 850

IF PEEK (BA+21)<>255 THEN SS=1

IF SS<>1 THEN RETURN

PRINT:PRINT"SINGLE (S) OR DOUBLE (D) SIDED DRIVES ?":T=CALLTA, 0
IFT=68 OR T=83THEN880

GOTO860

IFT=83 THEN SS=0

RETURN

REM CHECK YE VERSION

YE=-1:BA=0:IF PEEK(190)>223 THEN YE=1

IF PEEK(190)<160 THEN YE=2

IF PEEK(190)=208 THEN YE=0

IFYE=1 THEN BA=57344

IFYE=2 THEN BA=26624

IF BA=0 THEN PRINT"YE-DOS NOT PRESENT":END

RETURN

YE-OSI DOS 3.54

12

Page | 13

*hkkkk DCHK *kkkkkkk*x COMMAND :

DCHK "FILENAME"

DCHK stands for Disk Check/Verify. The Command will Verify a saved file
"FILENAME" with its original location in memory.

It will also check, if the file exists on the disk.

If the filename is not on the disk, ERR number 9 is returned.

In case the filename exists, the file content is compared to memory.

If this verification fails, ERR number 11 is returned. Elsewhere ERR 0 is
returned.

Verification or Check is done on the current selected drive only.

*kkx DREN *kkkkkkkkx* COMMAND:

DREN "FILENAME", "NEW FILENAME", DRIVE [, TYPE, PROTECTION]

DREN stands for Disk File Rename or Delete. The Command will rename a saved
file "FILENAME", change its type or protection status. With an empty new
filename, the file will be deleted.

Keep in mind, that Read Only protected files cannot be deleted, before the

protection has been changed.

DREN Version 1 (5 parameters):
DREN "FILNAME", "NEW FILENAME", DRIVE, TYPE, PROTECTION
This will change Filename and/or file attributes. Using the same filename

will only change attributes. For example, changing DOSSUP from RO to RW:

YE-OSI DOS 3.54

Page | 14

DREN"DOSSUP", "DOSSUP",0,1,0 (Drive 0, COM Type, RW Protection)

DREN Version 2 (3 parameters):

DREN "FILENAME", "", DRIVE

This will delete the file "FILENAME" on drive "DRIVE". Data is still on the
disk, but the directory entry filename is cleared.

File recovery is possible.

*kk*k SCR *kkkkkkkkx*x COMMAND:

SCR X (0...31/63), Y(0...15/31), DATA, [DATA,...]

SCR will write DATA (Strings or Variables) to the screen at position X,Y.

The left bottom corner of the screen is at SCR 0,0,"x". Range depends on
machine graphic capabilities like 32x32, 64x16 or 64x32 characters.

*kkk*k PTR *kkkkkkk*x COMMAND :

VAL=PTR (VARIABLE)

PTR will return the Pointer to the variable content as a 16bit address value.
VARIABLES can be a numeric variable like AD=PTR(A) or a string variable

AD=PTR (AS) or a pointer to an array like AD=PTR(M(0)). PTR(M(0)) will return a
pointer direction to the first byte of array M().

This can be used to reserve memory space and to place code or data into the
array to peek or poke or read or write to the disk.

REMARK: Each array element occupies 4 bytes. DIM M(255) will reserve 1KkB.

YE-OSI DOS 3.54

Page | 15

* %k k% CLG *kkkkkkk*x COMMAND :

CLG NUMBER

CLG will clear text or low-resolution graphics or enable/disable text/low
resolution mode. Low resolution mode is a 128x32 pixel graphic displayed in
the upper half of the text screen as a kind of split screen.
This was done by a modified character ROM of 4kB instead of 2kB. The
graphic part of the ROM is enabled by the ACIA RTS line and the upper half
display interval.
1 111 BN III-I -I_
I I I
' | | .
Il
I
|
III il
|
|
|
|
111
11

"-‘""'l""."" %

ClP lower 2kB character ROM Upper Low-Res 2kB character ROM

placed into a pin compatible 4kB EPROM with one gate logic chip.

CLG 0: DISABLE LOW-RES MODE (same as CLG without parameter)
- Standard text mode (RESET (F12) will do the same)
CLG 1: ENABLE LOW-RES MODE

- TOP part of the low-res display (128x32 or 128x64 pixel)
in half screen mode

YE-OSI DOS 3.54

Page | 16

CLG 2: Clear BOT half with "20"
- Clear text part

CLG 3: Clear TOP half with "0O"
- Clear graphic part

also see PAGE command

- Clear entire text screen, when back in text mode

*kkkk GDIS *kkkkkkk*x COMMAND :

GDIS X (0...127), Y(0...16/32/63), MODE (depending on display mode)

When the low-resolution graphics mode is enabled, GDIS will plot dots or
lines on the screen or will clear the same if required.

The Y coordinate of low-res section starts at Y¥Y=0 or Y=32 (upper half of
screen, depending on display mode) .

A graphic section of 128x32 or 128x64 is not much, but it is a simple
add-on to allow fast pixel graphics in combination with text output on the C1P
machine.

And it uses only the standard screen memory.

The pixel origin is at the left bottom corner of the upper low-res screen.

GDIS X, Y, 1 - Plot at X,Y a white dot

GDIS X, Y, 2 - Draw a line from the last coordinate to this one.
GDIS X, Y, O - Plot at X,Y a black dot (clear)

GDIS X, Y, 3 - Draw a black line (clear) to the new coordinate.

YE-OSI DOS 3.54

See GRDEMO.BAS program example:

5 0Y=32:IFPEEK (65506)<>0THENOY=0

6 F=1:IFPEEK (65506)<>0THENF=2

7 OM=0Y+16*F:0X=0Y+32*F-1

8 CLG1:CLG3

9 CLG2:SCR5,5,"LINE SET&RESET"

10 GDISO0,0M-1,1:GDIS127,0M-1,2

11 FOR L=0 TO 1

12 FOR R=0 TO 127 STEP 2

15 IFL=0 THEN GDISR,OX,1:GDISR,O0Y,2

16 IFL=1 THEN GDISR,OX,0:GDISR,OM, 3

17 IFL=1 THEN GDISR,OM-2,0:GDISR,OY,3

18 NEXT R:NEXT L

20 CLG3:IFPEEK(57088)=222 THEN 200

25 CLG2:SCR5,5,"LINE MESH"

30 FOR R=4TO 127 STEP 15

40 FOR S=4 TO 127 STEP 15

50 GDISR,0X,1:GDISS,O0Y,?2

60 NEXT S:NEXT R

70 CLG3:IFPEEK(57088)=222 THEN 200

110 CLG2:SCR5,5, "BOXES"

112 F=1:IFPEEK(65506)<>0THENF=2

115 FOR L=0 TO 3:FOR S=0 TO 1

120 FOR R=1 TO 10*F STEP 2*F

130 GDIS64-7*R/F,OM-R,1-S:GDIS64+7*R/F,OM-R, 2+S
140 GDIS64-7*R/F,OM+R,1-S:GDIS64+7*R/F, OM+R, 2+S
150 GDIS64-7*R/F,OM-R,1-S:GDIS64-7*R/F,OM+R, 2+S
160 GDIS64+7*R/F,OM+R,1-S:GDIS64+7*R/F,OM-R, 2+S
190 NEXT R:NEXT S:NEXT L

195 CLG3:IFPEEK (57088)<>222 THEN 7

200 CLGO:PAGE:PRINT"READY"

YE-OSI DOS 3.54

Page

17

Page |

In this program example, placing text by the SCR command and drawing and
removing low-res lines by the GDIS command is shown.

*kkkkk*k PAGE *kk*xk*x*x COMMAND :

Will clear text screen ($DO00-D3FF or S$D000-D7FF) with $20 (Space)

*kkkkkkk SET **x*k%x*x* COMMAND:

SET Number
SET will place the READ pointer to the given line number in Basic.

The next READ operation will take the first parameter from that line.

*hkkkkk CALL *kxk*x*k*x*x COMMAND :

[Val=] CALL, Address, Parameter
Call will call a subroutine at "Address" with the "Parameter" in ACCU
When ending the subroutine with RTS, the ACCU will be returned as Val.

Example: K=CALL64768,0 will return the keypress in K

*kkkkk ERR **xk*xk*x*x COMMAND :

[Val=] ERR

ERR will return the last DOS Error number. If now Error occurred, ERR
returns zero. Here a list of Error numbers and explanation.

ERROR MESSAGES:

Returns last DOS Error value from DOS parameter $E027

YE-OSI DOS 3.54

18

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

ERR

10:

11:

12:

13:

14:

15:

Page

No Error

Sync byte not found

Sync byte at start sector no found
Searching track error, not found

Track or Sector out of range

Drive not found

Data to long (>32k) to be saved, not enough free space on disk
Checksum not correct

DRIVE not valid/existing

File name not found

Disk Full Error

Verify failed or Sync byte F7 not found
Track zero not found

FAT Checksum Error

DISK IS WRITE PROTECTED

FILE is WRITE PROTECTED

YE-OSI DOS 3.54

19

Page | 20

o DOS *%x% %% COMMAND :

DOS (identical to DLOD "DOSSUB")
Loads program called "DOSSUP" from disk, if available.

The program will be placed at $E900-EFFF and provide additional DOS Basic
commands .

IMPORTANT!

In case of a "RESET", the DOSSUP Extension is disabled. Type "DOS" to re-
enable.

*kkkk ASS ***x*x%* COMMAND :

ASS (identical to DLOD "EXTMON")

Loads program called "EXTMON" from disk, if available.

The program will be placed at $1500 to $1EFF

This may destroy BASIC code that’s located at this RAM section.

EXTMON.COM may be replaced by any other utility of your choice.

REMARKS :
DOSSUP may be replaced by newer DOS Supplement versions or other tools.

When using only the minimal Disk Basic extensions you have to poke and peek
some memory location to get additional functions.

For example:

- Drive selected by $6820 (from 0 to 3)

Single/Double by $681E

After loading a file: $FO..Fl= Start ADR , $F2..F3= End ADR of loaded data

- and so on

YE-OSI DOS 3.54

Page | 21

sxexr DI SK sssrrs commmn:

DISK

Will load and run Boot sector of Disk 0 to load YE-OSI DOS routines to $6800
Like OSI Boot ROM, you have to select afterwards

C) COLD START (clears all memory)

W) WARM START or E) for EXTMON

IMPORTANT: If you have changed a disk in the drive, or you have added a disk
that is not recognized, enter “DISK” so DOS can rescan all drives for presents
(same as DISK 4) Otherwise, you can also enter “SEL {drive number] and DOS
will read the disk directory of the chosen drive.

*kk Kk DISK *%*x%**x* COMMAND :

DISK [Number 0...7]
This will call the YE-OSI DOS routines. Keep in mind, that this requires
to set up the DOS parameter table first!
For example
DOS Parameters:
$6820 Drive to be selected
$6827 returns last DOS Error value

(DRV 1: side A(0)/ B(l), DRV 2: side A(2)/side B(3)) for 3,5 inch disk
drives. (Emulation only supports single sided disk 0 & 2)

IMPORTANT:

Emulation supports drives 0/1 for first and 2/3 for second single or double
sided disks.

***** General:
Usage of SS or DS 3.5 and 5.25 inch disk drives with 35 or 80 Tracks.
(35 Track drives require a different boot sector version)

DS SD (160k capacity per side @ 125kbit FM coded in 8N1)

YE-OSI DOS 3.54

Physical Drive 1
Side A: >Drive number 0
Side B: >Drive number 1
Physical Drive 2
Side A: >Drive number 2

Side B: >Drive number 3

Max File length <=32k

Max 71 FAT Directory entries/ files on a disk

Sector 0 and 1 are used by DOS (BOOT and FAT sectors)

*kkkkkkkkk**** Supporting Programs on disk

DCOPY .BAS

Page

This BASIC program will copy all tracks of a diskette in Drive 1

(single sided only) to Drive 2.

GOSUB900:FA=BA+5216:ID=BA+5120:E=0
TM=BA+4608:TA=64768

~ o U1 D>

8 DR=T-48:GOSUB800:PRINT
10 PRINT"INSERT SOURCE DISK IN DRIVE 0":PRINT

15 PRINT"PRESS (Y), WHEN READY":T=CALLTA,0:IFT<>89THEN

20 SELO:IF ERR>0 THEN PRINT "DRIVE 0 NOT READY":END

25 SELDR:IF ERR>0 THEN PRINT "DRIVE";CHRS (DR+48);" NOT
30 FOR R=FA TO FA+(70*13) STEP 13: REM CHECK IF DRV IS

40 TIF PEEK(R)<>0 THEN E=1
50 NEXT R
60 IF E=0 THEN 100

70 PRINT:PRINT ">> DRIVE ";CHRS$ (DR+48);" IS NOT EMPTY"

PAGE:PRINT"* DISK COPY UTILITY *":PRINT"DRIVE O TO 1,2 OR 3":PRINT

PRINT"TARGET DRIVE NUMBER ?":T=CALLTA,0:IFT<49 OR T>51THEN END

END

READY" : END
EMPTY

80 PRINT"PRESS (Y), TO FORMAT DRIVE":T=CALLTA,0:IFT<>89THEN END

90 PRINT"FORMATTING, PLS WAIT":DFMT DR,0,0
100 REM ****** COPY DISK O TO TARGET DISK ****xx*

110 SELO:IF ERR>0 THEN PRINT "DRIVE O NOT AVAILABLE":END
130 FOR R=2 TO 79: REM SEC_T,TRK T first, E022/E023 second

140 IF PEEK(ID+R)=0 THEN 310: REM TRACK NOT USED
150 PRINT"T="R;"-";

155 BI=1:FOR S=0 TO 7

160 POKEBA+37,255: REM Finish with E022/23

170 POKEBA+36,0: REM TAKE NEXT SECTOR

180 POKEBA+32,0: REM DRIVE 0 SOURCE

190 POKEBA+30,SS: REM SINGLE SIDED

200 POKE240,0:IFYE=1THENPOKE241,242: REM ADR=S$F200

YE-OSI DOS 3.54

22

205
210
220
225
230
240
250
260
265
270
280
285
290
300
305
310
500
510
520
530
540
600
610
620
630
640
650
660
670
700
710
720
800
810
820
830
840
850
860
870
875
880
885
900
910
920
930
940
950
960
970

Page

IFYE=2THENPOKE241,122: REM ADR=$7A00

POKEBA+28,1: REM LENGHTH=256 Bytes
POKE236,R:POKE237,S: REM Start TRK2..79,SEC

IF (PEEK(ID+R) AND BI)=0 THEN 240:REM SKIP EMPTY SECTORS
DISK1:IF ERR>0 THEN PRINT "READ SECTOR FAILED":END
POKE236,R:POKE237,S: REM Start TRK, SEC

REM TRK2,SECO info is given by last READ operation
POKE240, 0:IFYE=1THENPOKE241,242: REM ADR=$F200
IFYE=2THENPOKE241,122: REM ADR=$7A00

POKEBA+28,1: REM LENGHTH=256 Bytes

POKEBA+32,DR: REM DRIVE DESTINATION

IF (PEEK(ID+R) AND BI)=0 THEN 305:REM SKIP EMPTY SECTORS
DISK2: IF ERR>0 THEN PRINT "SECTOR SAVE FAILED":END
PRINT CHRS$ (48+S);" ";

BI=BI*2:NEXT S:PRINT

NEXT R

DISK6:IF ERR>0 THEN PRINT "UPDATE FAT TO TARGET FAILED":END
POKEBA+37,0: REM Finish with 00 00

POKEBA+36,255: REM Take next free sector

SELDR:IF ERR>0 THEN PRINT "DRIVE"DRIVE ";CHRS$ (DR+48);" FAILED":END
SELO:IF ERR>0 THEN PRINT "DRIVE 0 NOT AVAILABLE":END
PAGE : PRINT"COPY BOOT SECTOR AND FAT"

POKEBA+38,255: REM BOOT SECTOR FORMAT DISK
POKEBA+32,DR: REM TARGET DRIVE

POKEBA+30,SS: REM SINGLE SIDED

DISK3: REM WRITE BOOT SECTOR

IF ERR>0 THEN PRINT "BOOT SECTOR FAILED":END

SELO:IF ERR>0 THEN PRINT "DRIVE O NOT AVAILABLE":END
PRINT "READY"

SELDR:DIR:IF ERR>0 THEN PRINT "DOS FORMAT FAILED"
SELO:IF ERR>0 THEN PRINT "DOS DRIVE 0 FAILURE":END
END

REM CHECK FOR SS OR DS DRIVES

SS=0:IF DR<2 THEN 840

IF PEEK (BA+20+3)<>255 THEN SS=255

GOTO 850

IF PEEK (BA+20+1)<>255 THEN SS=255

IF SS<>255 THEN RETURN

PRINT:PRINT"SINGLE (S) OR DOUBLE (D) SIDED DRIVES ?":T=CALLTA,O0
IFT=68 OR T=83THENS880

GOT0860

IFT=83 THEN SS=0

RETURN

REM CHECK YE VERSION

YE=-1:BA=0:IF PEEK(190)>223 THEN YE=1

IF PEEK(190)<160 THEN YE=2

IF PEEK(190)=208 THEN YE=0

IFYE=1 THEN BA=57344

IFYE=2 THEN BA=26624

IF BA=0 THEN PRINT"YE-DOS NOT PRESENT" :END

RETURN

YE-OSI DOS 3.54

23

Page

*kkkkkkkkkkk** Supporting Programs on disk

FCOPY.BAS

This BASIC program will copy a single file form diskette in Drive 1
to Drive 2. Read Only files will be transferred, if confirmed.
Basic Code:

5 REM FILE COPY UTILITY TO OTHER DRIVE

10 CLEAR:GOSUB900:DR=PEEK (BA+32) : IF DR=0 THEN DN=2

20 IF DR=2 THEN DN=0:REM GET OTHER DRIVE NUMBER

30 PAGE:PRINT"FILE COPY UTILITY FROM";DR;"TO";DN

40 INPUT"ENTER FILENAME ";NAS:IF NAS="" THEN 40

50 FA=BA+5216:ID=BA+5120:E=0

55 TM=BA+4608:TA=64768:AD=245

60 DCHK NAS:REM TEST, IF FILENAME EXIST

65 FE=PEEK (AD) +256*PEEK (AD+1)

70 IF ERR=9THEN PRINT"FILENAME NOT FOUND, TRY AGAIN":PRINT:GOTO40
75 SEL DN:IF ERR>0 THEN PRINT "DRIVE";DN;"IS NOT AVAILABLE":END
80 DCHK NAS: IF ERR=9 THEN 110

90 PRINT"FILE EXIST,OVERWRITE IT (Y/N)?2": T=CALL TA,0

100 IFT<>89THEN PRINT"QUIT":END

110 SEL DR:IF ERR>0 THEN PRINT "DRIVE";DR;"IS NOT AVAILABLE" :END
120 S1=PEEK (FE+8) :S2=PEEK (FE+9) :S=S1+256*S2

130 E1=PEEK(FE+10) :E2=PEEK (FE+11) :E=E1+256*E2

135 TP=PEEK (FE+12) : Z=FRE (0) : IF 7Z<0 THEN Z=65536+2

140 IF (E-S+255)<Z THEN 150

145 PRINT"NOT ENOUGH FREE MEMORY TO COPY FILE !":GOTO0380

150 DIM M((E-S+256)/4)

152 MS=PTR(M(0)) :ME=MS+ (E-S) :REM GET MEMORY ADDRESS

155 POKE (FE+8),MS AND 255:POKE (FE+9) , INT (MS/256)

160 POKE (FE+10),ME AND 255:POKE (FE+11), INT (ME/256)

165 POKE (FE+12),16: REM SIMPLE BINARY FILE

170 DLOD NAS

180 POKE (FE+8),S1:POKE (FE+9),S2

190 POKE (FE+10),E1:POKE (FE+11),E2

200 POKE (FE+12),TP: REM RESTORE ORIGINAL

210 IF ERR>0 THEN PRINT "LOADING FILE ERROR":GOT0380

220 SEL DN:IF ERR>0THEN PRINT"DRIVE";DN;"IS NOT AVAILABLE":END
300 IF (TP AND 15)>=2 THEN DREN NAS,NAS$,DN,1,0

305 DSAV NAS,DN,1,0,MS,ME

310 IF ERR>0THEN PRINT"SAVING FILE FAILED, ERROR";ERR:END

320 DCHK NAS:IF ERR>0 THEN PRINT "VERIFY FAILED, ERROR";ERR:END
330 FE=PEEK (AD) +256*PEEK (AD+1)

340 POKE (FE+8),S1:POKE (FE+9),S2

350 POKE (FE+10),E1:POKE (FE+11),E2

360 POKE (FE+12),TP: REM RESTORE ORIGINAL

370 POKE BA+31,1:DISK 6:REM FORCE SAVING FAT

380 SEL DR:CLEAR

390 END

900 REM CHECK YE VERSION

910 YE=-1:BA=0:IF PEEK(190)>223 THEN YE=1

920 IF PEEK(190)<160 THEN YE=2

930 IF PEEK(190)=208 THEN YE=0

YE-OSI DOS 3.54

24

Page | 25

940 IFYE=1 THEN BA=57344
950 IFYE=2 THEN BA=26624
960 IF BA=0 THEN PRINT"YE-DOS NOT PRESENT":END

970 RETURN

***%* Disk Controller Interface

DISK CONTROLLER BOARD FROM ELEKTOR (Almost identical to OSI 610 BOARD)

PIA DATA A

PIA DATA B

coo0o0

coo02

FCD Connector PIN layout (on a 610 Floppy controller board) :

<$C002>
HEAD LOAD
MOTOR ON
DRIVE SELO
SIDE SEL
STEP

DIR

Not used
WE

WD

RXC

RD

POWER
<$C000>
INDEX
DRIVE SEL1
WPROTECT
READY1

SECTOR

<PIN>,<PORT> <COMMENT>

1,PB7 (ELEKTOR combined HL and Step (to disable drive selector)
2,PB6 (ELEKTOR not used) -> ONLY on modified 610 board
3,PB5 (Drivel :PB5=1,PA6=0)

4,PB4 (ELEKTOR option) -> ONLY on modified 610 board

5, PB3

6, PB2

7,PB1 (ELEKTOR not used) ERASE Enable (TRIM ERASE)

8,PB0 For YE-DOS, signal has to be inverted for the drive!!!

9,ACIA Write Data to Disk Drive (FM coded)

10,ACIA Receive Clock

11,ACIA Read Data

12,13 are GROUND, 14 is +5V -> ONLY on modified 610 board

17, PA7
18, PA6
19, PAS
20, PA4

21,PA3

(Drive2 :PB5=0,PA6=1) -> ONLY on modified 610 board
(ELEKTOR PA4=GND) (MY BOARD DRV RDY if available)
(ELEKTOR PA3=5V) (not used)

YE-OSI DOS 3.54

FAULT

TRKOO

READYO

Page
22,PA2 (ELEKTOR PA2=5V) (not used)
23,PA1 (ELEKTOR TRKO0O)
24,PA0 (ELEKTOR PAO=GND) (MY BOARD DRV RDY if available)

Serial Disk Data port:

ACIA CONTROL: CO010

ACIA DATA

*hkkk*k

6800:

6802:

6804 :

6806:

6808:

680A:

680C:

680E:

CO011

YE-OSI DOS VECTOR/PARAMETER TABLE:
JUMP SEARCH FILE (0)

JUMP READ FILE OR DELETE (1)

JUMP WRITE FILE (2)

JUMP FORMAT OR WRITE BOOT SECTOR (3)

JUMP CHECK DRIVES ATTACHED AND LOADS FAT

JUMP READ SELECTED FILE (5)

JUMP WRITE DISK FAT (6)

JUMP LOAD DISK FAT (7)

DOS INITIAL DISK PARAMETER TABLE

6810:

6814:

6818:

6819:

681A:

681B:

681C:

COPY OF START/END ADRESS OF BASIC 2x2
DRIVE FLAGS 4x

FF= Drive not available

00= Drive OK

Last Drive Index

Step delay in ms (24)

$C002 PIA Port Mirror (FE)

PIA PORT B MASK (FE)

YE-OSI DOS 3.54

(4)

ACTUAL TRACK ON READING / SECTOR COUNTER FOR WRITING

26

Page | 27

681D: Used space sector counter High

681lE: Drive Double sided (FF), default single sided (00)
681F: FAT has changed if >00

6820: Selected Drive (0=A side 0, 2=B side 0)

6821: Read or Delete flag (00 = READ)

6822: Low FAT File Name Pointer / Free sector count LOW
6823: High FAT File Name Pointer

6824: USER Define: Search free (FF) or take next (00) sector
6825: USER defined: FAT Single Sector flag 6825, 00(default) or single with
zero or FF with 6822/32

6826: READ ($FF) Bit or VERIFY / FULL FORMAT ($00)

6827: Error Code ($00)

6828: DOS BOOT Start entry

682B: DISK ID Vector Address

682D: DISK FAT Vector Address

682F: DISK TRK/SEC MAP Vector Address

A2/A3: Search Filename Pointer

9F: Length of Filename

sexxexs DISK CALLS in detai1 sxsxxs

*kx*k*x*x DISK 1

READ FILE/SECTOR

Start sector will be TRK T ($SEC) and SEC T (SED)

Flag $6826: Verify (00) or default Read Data (FF)

Val $681C: Length of data file in sectors

Data Adr : Data pointer to memory DATA S (FO0-F1)

Start FDC T pointer Start Track, Start Sector (EE-EF)
Next $6822/23 TRK/SEC will show next Sector in chain

YE-OSI DOS 3.54

Page | 28

***%% DISK 2

WRITE FILE

File length is max. 128 sectors or 32kB

Num $681C: Number of sectors (1...128)

Num $6820: Selected Drive (0=1 side A, 2=2 side A)

Flag $6824: Search free default (FF) or take next (00) sector for file
If (00), start sector will be TRK T (SEC) and SEC_T (SED)

and all following sectors will be incremented (FAT bits are set)

If (00), Number of sectors will be occupied in any case (if used or not)

Flag $6825: FILE FAT LIST default (00) will end with (00 00) or (FF) by
$6822/23 TRK/SEC

Adr SEO : Data pointer to memory DATA S (FO0-F1)

**x%*x* DISK 3
FORMAT OR WRITE BOOT SECTOR
Flag $6826: "00" will clear and format entire disk

"FF" (default) , Format only Boot sector, disk content will
remain.

Flag $6820: Selected Drive (0=1 side A, 2=2 side A)

Flag $681E: Drive Double sided (FF), default single sided (00)

EXAMPLE: To format a "blank" 160k disk in drive 2 you have to:

Set $6826=0 , $6820=2 , $681lE=0, "DISK 3" , $6826=255

IMPORTANT :

In this DOS version, format will only work, if DOSSUP is loaded correctly.
There is a vector pointing to the memory area within DOSSUP.

YE-OSI DOS 3.54

Page | 29

*k*x*x* DISK 4
CHECK DRIVES ATTACHED AND LOADS FAT (4)

Will Check for available drives and reload FAT from drive 0 or lowest attached
drive

* %k %k k% DISK 5

READ FILE FROM FAT POINTER

File will be FAT DATA POINTER (F5/F6) to FAT text entry
Flag $6826: Verify (00) or default Read Data (FF)

Data Adr : Data pointer to memory DATA S (FO0-F1)

Start : FDC T pointer Start Track, Start Sector (EE-EF)

**x*x* DISK 6
WRITE DISK FAT (6)

Will write FAT data from $7C00.. to currently active drive, if FAT data has
been changed

$681F indicates FAT Changes if >00

*k*k*x*x DISK 7

Will load FAT data from currently active drive to memory $7C00..

YE-OSI DOS 3.54

Page | 30

% YE-OSI DOS FAT structure in memory:

SECTOR Table ($50 bytes), Starts at $7C00, BIT O0=Sector 0, BIT 1l=Sector 1,

DOS VERSION INFO ($10 bytes), Starts at $7C50. Should end with "00"

MAX 71 File Entries in FAT, Starts at $7C60 (.. S$7FFB), each 13 bytes in size.

Directory table 13 bytes each -

6 Bytes for File name

2 Bytes for st,ss Start Track, Start Sector

2 Bytes for Ls,Hs Low, High Start address of data
2 Bytes for Le, He Low High End address of data

1 Byte for ft File Type and protection status
File type example: 13 (SYSTEM), 10 (BINARY), 00 (BASIC)

<$10 -—> DATA FILE
>=$10 -> EXEC FILE
>=$20 -> OTHERS

BIT 0=0 -> NORMAL

BIT 0=1 -> EXECUTABLE
ASS has $13 (executable)

DATA TRACKS 2...79 or 2...39 / 2... 34

Each track includes 8 Sectors with DATA, GAP and Lead In (Pre-Formatted). This
will allow to read / write single sectors without reading the whole track
before.

IMPORTANT:

This DOS will only run on 1Mhz machines, actually on an average CPU clock of
an C1lP and UK101l (about 0,991 Mhz). Modified ClP’s should clock at a max. CPU
clock of 1.0 Mhz, to guarantee correct floppy data rates and timing. The
Emulator will work at any selected CPU speed.

YE-DOS has been tested on newer 1.44MB drives as well as old Shugart 400 5.25
drives and works well. On some early 3.5 floppy drives it may fail, when the
time of switching from WE active to Read valid data takes more than 800 usec.

YE-OSI DOS 3.54

*kkk File Type and protection status:

BAS=0

BAS=1

BAS=2

BAS=3

COM=16

COM=17

COM=18

COM=19

SEQ=32

SEQ=33

SEQ=34

SEQ=35

VAR=48

VAR=49

VAR=50

VAR=51

Page

RWn (BASIC Token Memory loads typically to $0300)

RWa
R n

R a

RWn (MACHINE CODE Binary Code)

RWa

RWn (SEQUENCIAL comma separated data,

RWa

RWn (VARIABLE , sane as binary data)
RWa
R n

R a

Protection status:

RWn +0

RWa +1

R n +2

R a +3

Read Write normal
Read Write autorun
Read Only normal

Read Only autorun

YE-OSI DOS 3.54

same as binary data)

31

Page | 32

***xx* YE-OSI DOS Track structure:

Track 0 (@ $0000 of IMG file)

XX, Yy High, Low Start address (6800)
zZZ Cluster number of 256 bytes (08)

DOS Start code 6800-6FFF (2 kBytes)

Track 1 (@ $0900 of IMG file)
Sector table, Directory, and duplicate Sector table, Directory

$0900: Sector table, 1 bit = 1 Sector starting with highest bit (1 byte =1
track) max 80/40/35 tracks or 640 sectors or 160kB / 80kB

(First 2 FAT bytes are FF always used for TRKOO and TRKO1)
Followed by Directory name table 13 bytes each (max. 71 entries)
End of Directory with Checksum

Followed by copy of directory table

Track 2 (@ $1200 with length of 0900)

Track 2...79/39/35 with Sector 0...7

FC=Sync ID

FE=Track Sector ID

F7=Chksum ID

FB=Data ID

FF=Timing filler and Read/Write change zones

Each sector starts with track sync ID(FC):
Sector ID FC followed by physical Sector gap
FE Sector Info --—- Track number, Sector number, Next track,
Next sector, F7 Checksum ID, Sum of Sector info
FB Sector Data ID --— Sector data: 256 data bytes
F7 Checksum ID --— Sum of sector data

followed by physical Sector Write runout gap of about 1.0ms

YE-OSI DOS 3.54

Page | 33

Track Structure:

Track Header:

i
|

START OF INDEX PULSE (1 to 0) plus 5ms delay to start reading
2 - 3 Bytes FF (to sync controller)

3 - 3 Bytes track Sync ID (Space "FF FF FC")

4 - 9 Bytes PRE-Sector header (Header "00 01 02 03 04 05 06 07 08")
Sector Header:

5 - 7..13 Bytes Inter-Sector GAP (runout for floppy +-1.5% speed tolerances)
6 - 3 Bytes Sync ID (Space "FF FF FC")

7 - 3 Bytes R/W switching zone ("FF FF FF")

8 - 3 Bytes Sector Start Info ID (Space "FF FF FE")

9 - 4 Bytes Sector Info ("TRK SEC NEXT TRK NEXT SEC")

10 - 2 Bytes CHECKSUM ID ("F7, CHECKSUM")

11- 257 Bytes Data ID plus Data("FB, 256x DATA....")

12- 2 Bytes CHECKSUM ID ("F7, CHECKSUM")

Next Sector Header:

11 - 12 Bytes Inter-Sector GAP

Remark:

Due to the Inter-Sector GAPs, single sectors can be written without reading
the entire track before (direct sector access method).

CPU cycle timing is not critical as the sync ID’s(FC) are fixed to allow this
Sector insertion method. Will run only on unmodified C1lP and UK10l machines in
real. (2 Mhz machines may work at double Floppy controller frequencies, this
has not been verified)

Floppy step rate is set by default to 24ms (becomes 12ms on 2Mhz) .

Within Emulation, the CPU clock speed does not cause changes nor problems.

YE-OSI DOS 3.54

Page | 34

Listing

YE-OSI DOS 3.54

Page | 35

YE-OSI DOS 3.54

Page | 36

gy

YE-OSI DOS 3.54

Page | 37

.

YE-OSI DOS 3.54

Page | 38

k.

YE-OSI DOS 3.54

Page | 39

YE-OSI DOS 3.54

YE-OSI DOS 3.54

40

Page | 41

YE-OSI DOS 3.54

Page | 42

YE-OSI DOS 3.54

Page | 43

pu—

o

YE-OSI DOS 3.54

Page | 44

YE-OSI DOS 3.54

Page | 45

YE-OSI DOS 3.54

Page

46

ey

YE-OSI DOS 3.54

Page | 47

YE-OSI DOS 3.54

Page | 48

YE-OSI DOS 3.54

Page | 49

g

YE-OSI DOS 3.54

Page | 50

YE-OSI DOS 3.54

Page | 51

YE-OSI DOS 3.54

Page | 52

YE-OSI DOS 3.54

Page | 53

YE-OSI DOS 3.54

Page | 54

1]

YE-OSI DOS 3.54

Page | 55

YE-OSI DOS 3.54

Page

YE-OSI DOS 3.54

56

Page | 57

YE-OSI DOS 3.54

Page | 58

YE-OSI DOS 3.54

Page | 59

YE-OSI DOS 3.54

Page | 60

YE-OSI DOS 3.54

61

Page

YE-OSI DOS 3.54

Page | 62

YE-OSI DOS 3.54

Page | 63

YE-OSI DOS 3.54

Page | 64

YE-OSI DOS 3.54

Page | 65

YE-OSI DOS 3.54

Page | 66

YE-OSI DOS 3.54

Page | 67

A

21

fred

YE-OSI DOS 3.54

Page | 68

YE-OSI DOS 3.54

Page | 69

YE-OSI DOS 3.54

Page | 70

YE-OSI DOS 3.54

Page | 71

YE-OSI DOS 3.54

Page | 72

YE-OSI DOS 3.54

Page | 73

e

YE-OSI DOS 3.54

Page | 74

g

YE-OSI DOS 3.54

Page | 75

—

YE-OSI DOS 3.54

Page | 76

e,

e,

YE-OSI DOS 3.54

77

Page

YE-OSI DOS 3.54

Page | 78

YE-OSI DOS 3.54

Page | 79

YE-OSI DOS 3.54

Page | 80

YE-OSI DOS 3.54

Page | 81

YE-OSI DOS 3.54

Page | 82

#EDE

YE-OSI DOS 3.54

Page | 83

YE-OSI DOS 3.54

YE-OSI DOS 3.54

Page

84

YE-OSI DOS 3.54

Page

85

Page | 86

YE-OSI DOS 3.54

Page | 87

YE-OSI DOS 3.54

Page | 88

YE-OSI DOS 3.54

Page | 89

YE-OSI DOS 3.54

Page | 90

YE-OSI DOS 3.54

Page | 91

YE-OSI DOS 3.54

Page | 92

YE-OSI DOS 3.54

Page | 93

YE-OSI DOS 3.54

